Sunday, November 7, 2010

Colorful Mix of Asteroids Discovered, May Aid Future Space Travel

New research from NASA's Spitzer Space Telescope reveals that asteroids somewhat near Earth, termed near-Earth objects, are a mixed bunch, with a surprisingly wide array of compositions.
undefined
This image, taken by NASA's Near Earth Asteroid 
Rendezvous mission in 2000, shows a close-up view 
of Eros, an asteroid with an orbit that takes it somew
hat close to Earth. NASA's Spitzer Space Telescope 
observed Eros and dozens of other near-Earth 
asteroids as part of an ongoing survey to study 
their sizes and compositions using 
infrared light. (Credit: NASA/JHUAPL)

Like the chocolates and fruity candies inside a piƱata, these asteroids come in assorted colors and compositions. Some are dark and dull; others are shiny and bright. The Spitzer observations of 100 known near-Earth asteroids demonstrate that their diversity is greater than previously thought.

The findings are helping astronomers better understand near-Earth objects as a whole -- a population whose physical properties are not well known.

"These rocks are teaching us about the places they come from," said David Trilling, assistant professor of physics and astronomy at Northern Arizona University, and lead author of a new paper on the research appearing in the September issue of Astronomical Journal. "It's like studying pebbles in a streambed to learn about the mountains they tumbled down."

One of the mission's programs is to survey about 700 near-Earth objects, cataloguing their individual traits. By observing in infrared, Spitzer is helping to gather more accurate estimates of asteroids' compositions and sizes than what is possible with visible-light alone.

Trilling and his team have analyzed preliminary data on 100 near-Earth asteroids so far. They plan to observe 600 more over the next year. There are roughly 7,000 known near-Earth objects out of a population expected to number in the tens to hundreds of thousands.

"Very little is known about the physical characteristics of the near-Earth population," Trilling said. "Our data will tell us more about the population, and how it changes from one object to the next. This information could be used to help plan possible future space missions to study a near-Earth object."

The data show that some of the smaller objects have surprisingly high albedos (a measurement of how much sunlight an object reflects). Since asteroid surfaces become darker with time due to exposure to solar radiation, the presence of lighter, shinier surfaces for some asteroids may indicate that they are relatively young. This is evidence for the continuing evolution of the near-Earth object population.

In addition, the asteroids observed so far have a greater degree of diversity than expected, indicating that they might have different origins. Some might come from the main belt between Mars and Jupiter, and others could come from farther out in the solar system. This diversity also suggests that the materials that went into creating the asteroids -- the same materials that make up our planets -- were probably mixed together like a big solar-system soup very early on in its history.

The research complements that of NASA's Wide-field Infrared Survey Explorer, or WISE, an all-sky infrared survey mission up in space now. WISE has already observed more than 430 near-Earth objects. Of these, more than 110 are newly discovered.

In the future, both Spitzer and WISE will reveal even more about the "flavors" of near-Earth objects. This could reveal new clues about how the cosmic objects might have dotted our young planet with water and organics -- ingredients needed to jump-start life.

Other authors include Cristina Thomas, a post-doctoral scholar of physics and astronomy at NAU, and researchers from around the world.

How Brain Is Wired for Attention

University of Utah (U of U) medical researchers have uncovered a wiring diagram that shows how the brain pays attention to visual, cognitive, sensory, and motor cues. The research provides a critical foundation for the study of abnormalities in attention that can be seen in many brain disorders such as autism, schizophrenia, and attention deficit disorder.
undefined
University of Utah (U of U) medical researchers have 
uncovered a wiring diagram that shows how the brain 
pays attention to visual, cognitive, sensory, and motor
cues. The research provides a critical foundation for 
the study of abnormalities in attention that can be seen 
in many brain disorders such as autism, 
schizophrenia, and attention deficit disorder. 
(Credit: iStockphoto/Sebastian Kaulitzki)
The study appears Nov. 1, 2010, online in the Proceedings of the National Academy of Sciences (PNAS).
"This study is the first of its kind to show how the brain switches attention from one feature to the next," says lead researcher Jeffery S. Anderson, M.D., Ph.D., U of U assistant professor of radiology. Anderson and his team used MRI to study a part of the brain known as the intraparietal sulcus. "The brain is organized into territories, sort of like a map of Europe. There are visual regions, regions that process sound and areas that process sensory and motor information. In between all these areas is the intraparietal sulcus, which is known to be a key area for processing attention," Anderson says. "We discovered that the intraparietal sulcus contains a miniature map of all of these territories. We also found an organized pattern for how control regions of the brain connect to this map in the intraparietal sulcus. These connections help our brain switch its attention from one thing to another."
In addition, scientists discovered that this miniature map of all the things one can pay attention to is reproduced in at least 13 other places in the brain. They found connections between these duplicate maps and the intraparietal sulcus. Each copy appears to do something different with the information. For instance, one map processes eye movements while another processes analytical information. This map of the world that allows us to pay attention may be a fundamental building block for how information is represented in the brain.
"The research uncovers how we can shift our attention to different things with precision," says Anderson. "It's a big step in understanding how we organize information. Furthermore, it has important implications for disease. There are several diseases or disorders where attention processing is off, such as autism, attention deficit disorder, and schizophrenia, among others. This research gives us the information to test theories and see what is abnormal. When we know what is wrong, we can talk about strategies for treatment or intervention."
Deborah Yurgelun-Todd, Ph.D., professor of psychiatry in the U of U Schoold of Medicine and an investigator with the U of U Brain Institute and the Utah Science Technology and Research Initiative (USTAR), was the principal investigator and senior author of the study. The research was funded by a National Institutes of Health grant from the National Institute on Drug Abuse.